Table ? a Acute Water Quality Criteria for Protection of Aquatic Life in Ambient Waters

Chemical	CMC (ug/L)	Conversion Factor
		(CF)
Arsenic (III)	339.8 ^{a,b}	1.000
Chromium (VI)	16.02 ^{a,b}	0.982
Cyanide	22°	n/a
Dieldrin	0.24^{d}	n/a
Endrin	0.086^{d}	n/a
Lindane	0.95 ^d	n/a
Mercury	1.694 ^{a,b}	0.85
Parathion	0.065 ^d	n/a
Selenium	19.34 a,b	0.922

aCMC=CMCtr

^bCMC ^d =(CMC^{tr})CF The CMC ^d shall be rounded to two significant digits.

^cCMC should be considered fee cyanide as CN.

 $^{d}CDM = CMC^{t}$

NOTES:

The term n/a means not applicable.

CMC is Criterion Maximum Concentration

CMC^{tr} is the CMC expressed as a total recoverable.

CMC^d is the CMC expressed as a dissolved concentration.

CMC^t is the CMC expressed as a total concentration.

Table ?b

Chemical	m_A	b _A	Conversion Factor (CF)
Cadmium ^{a,b}	1.128	-3.6867	0.85
Chromium (III) ^{a,b}	0.819	+3.7256	0.316
Copper ^{a,b}	0.9422	-1.700	0.960
Nickel ^{a,b}	0.846	+2.255	0.998
Pentachlorophenol ^c	1.005	-4.869	n/a
Zinc ^{a,b}	0.8473	+0.884	0.978

 $^{{}^{}a}CMC^{tr} = exp \{m_{A}[ln(hardness)] + b_{A}\}$

NOTES:

The term "exp" represents the base e exponential function.

The term "n/a" means not applicable.

CMC is Criterion Maximum Concentration.

CMC^{tr} is the CMC expressed as total recoverable.

CMC^d is the CMC expressed as a dissolved concentration.

CMC^t is the CMC expressed as a total concentration.

Table 2a Chronic Water Quality Criteria for Protection of Aquatic Life in Ambient Water

Chemical	CCC (ug/L)	Conversion Factor (CF)
Arsenic (III)	147.9 ^{a,b}	1.000
Chromium (VI)	10.98 ^{a,b}	0.962
Cyanide	5.2°	n/a

^bCMC^d=(CMC^{tr})CF. The CMC^d shall be rounded to two significant digits.

 $^{{}^{}c}CMC^{t}=\exp\{m_{A}[pH]+b_{A}\}\$ The CMC t shall be rounded to two significant digits.

Dieldrin	0.056^{d}	n/a
Endrin	0.036^{d}	n/a
Mercury	0.9801 ^{a,b}	0.85
Parathion	0.013 ^d	n/a
Selenium	5 ^{a,b}	0.922

aCCC=CCCtr

^bCCC^d=(CCC)^{tr}CF

^cCCC should be considered free cyanide as CN.

 $^{d}CCC=CCC^{tr}$

NOTES:

The term "n/a" means not applicable.

CCC is Criterion Continuous Concentration.

CCC^{tr} is the CCC expressed as total recoverable.

CCC^d is the CCC expressed as a dissolved concentration.

CCC^t s the CCC expressed as a total concentration

TABLE 2b

Chemical	m _c	b _c	Conversion Factor (CF)
Cadmium ^{a,b}	0.7852	-2715	0.850
Chromium (III) ^{a,b}	0.819	+0.6848	0.860
Copper ^{a,b}	0.8545	-1.702	0.960
Nickel ^{a,b}	0.846	+0.0584	0.997
Pentachlorophenol ^c	1.005	-5.134	n/a
Zinc ^{a,b}	0.8473	+0.884	0.986

 $^{^{}a}CCC^{tr}=exp\{m_{c}[ln (hardness)]+b_{c}.$

NOTES:

The term "exp" represents the base e exponential function.

The term "n/a" means not applicable.

CCC is Criterion Continuous Concentration

CCC^{tr} is the CCC expressed as total recoverable.

CCC^d is the CCC expressed as a dissolved concentration.

CCC^t is the CCC expressed as a total concentration.

TABLE 3 Water Quality Criteria for Protection of Human Health

^bCCC^d=(CCC^{tr})CF. The CCC^d shall be rounded to two significant digits.

 $^{^{}c}CCC=exp\{m_{A}[pH]+b_{A}\}$. The CCC^{t} shall be rounded to two significant digits.